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STUDY OF BRAIN WHITE MATTER ANISOTROPY 
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Laboratory of Biophysics and Image Processing, University of Picardie Jules Vernes, Amiens, FRANCE 

 
Abstract - An in vitro study to detect brain white matter 
anisotropy is presented. Porcine cylindrical samples were 
compressed (0,5mm/mn) in a testing apparatus composed 
of a testing machine combined with a precision balance. 
Two different types of samples were harvested: 1) cut in 
parallel and 2) perpendicular to axon fibers present in 
white matter. For an elongation of 0 to 25%  white matter 
exhibited isotropy. For deformation superior to 25%, the 
load versus elongation curves diverged increasingly, just 
to a difference of 37% between the samples of the two 
perpendicular directions for 35% of elongation, 
respectively. 
Keywords – Biomechanics, brain, white matter, 
compression,  anisotropy.  
 

I. INTRODUCTION 

Recent progress in numerical simulation, parallel to 
improvements in medical imaging allows to implement 
biomechanical simulation of brain tissue. Those simulations 
will be useful for prognosis and diagnostic concerning post-
traumatic reaction of brain tissue or the development of brain 
tumors and their effect on intracranial structures. 

 
Simulation, to be realistic, has to take into account the 

mechanical properties of tissues and even so to consider all 
basic stresses: compression/traction, shear, and torsion. This 
motivates detailed investigations of different kinds of tissue 
under different boundary conditions. In this study we 
performed experiments to verify the existence of anisotropy in 
white matter of the brain under compression. Existence of 
anisotropy would be of high importance for the design and 
execution of the above mentioned simulations. 

 
Low speed tests on brain tissue have been executed for 

more than thirty years. During the sixties and seventies, 
experiments were mainly conducted in vitro on animal brain, 
using cylindrical samples. Most were creep and relaxation 
tests [1, 2]. Linear viscoelastic models have been used to 
analyze data [2], or calculate simple viscoelastic parameters as 
viscosity or elasticity moduli [1, 3]. 

More recently, Miller et al. [4] conducted compression tests 
at different speeds (0.005mm/mn, 5mm/mn, 500mm/mn) on 
swine brains. Results were presented using a non-linear 
viscoelastic model.  

All those past experiments did not take into account brain 
anisotropy, which is a critical factor in biomechanical 
simulation of brain. Except Metz [3], all samples used for in 
vitro tests were cylindrical ones, which seems to be the most 
reliable way to reproduce geometry of samples in such a soft 
tissue as the white and gray matter of the brain. Due to their 

axial symmetry cylindrical samples imply axial tests only. 
Anyway, anisotropy may be investigated by harvesting 
samples in perpendicular directions, which was the approach 
chosen for the present work. Experiments consisted of 
quasistatic compression on porcine cylindrical brain samples. 

 

II. METHODOLOGY 

A. Histology 
Brain white matter has been chosen for this study aiming 

for evaluation of tissue anisotropy. Even so extremely soft 
and fragile this tissue should exhibit anisotropy due to its 
histological structure. Considering its delicate properties we 
decided to work with cylindrical probes, since this is the most 
convenient and reproducible way to harvest samples. To 
enable brain anisotropy measurements, samples had to be cut 
into different directions, based on a careful study of the 
particular brains topography. 

 
Both gray and white matter are mainly composed of glial 

cells and neurons. While glial cells are present in both tissues, 
soma and dendrites of the neurons are to be found in gray 
matter. The major part of the axons forms an important part of 
the white matter. Since axons are long fibers, anisotropy is 
more probable in white than in gray matter. Fig.1 shows a 
schematic view of white and gray matter. The axon fibers 
coming out from gray matter are forming the white matter. 
Orientations chosen for the cut out of the cylindrical samples 
are also indicated.  

 
 
 

 
 

Fig. 1 : Sites and ways of sample cutting in white matter of brain. The 
dotted lines represent the sample axis. 
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Fig. 2 : Typical sample from two perpendicular points of view.  
 
 

B. Sample preparation 
Seventeen samples were harvested from eight brains, and 

tested at a mean temperature of 28°C (27,3 !" 28,4°C). 
Brain mass was comprised between 82g and 102g, which is 
close to the weight of an adult swine. Pigs were sacrificed in a 
slaughtering house following standard procedures. The next 
day, brains were brought to the laboratory and placed into a 
refrigerator for not longer than 10h until testing. 

 
Samples were harvested from brains using a biopsy punch 

(Stiefel, dia. 6mm), a standard cylindrical surgical tool. To 
prevent from brain adhesion the cutting tool was covered with 
special oil (Haribo ). Perpendicular samples were cut in 
parallel to the brain surface directly beneath gray matter. 
Parallel samples were cut perpendicular to the brain surface 
also directly beneath gray matter, one of their two faces 
tangential to gray matter. Location was randomly chosen, 
based on the assumption that there is no significant variation 
of white matter properties to be found in the brain [3]. After 
cutting a sample, the brain was replaced into the refrigerator 
until next sample cutting. Sizes of the samples were: height ≈ 
4mm, width  ≈ 5mm.  

The cut sample was placed 15mn into a recipient filled with 
moist air, to attain 28°C without dehydration and to  establish 
an equilibrated state which includes the geometry. A typical 
example of a sample from two perpendicular points of view is 
presented in Fig.2. 

After the compression experiments samples exhibited no 
sign of dehydration. 

 
 

C. Testing apparatus 
For the testing apparatus (Fig. 3) we integrated a precision 

balance Ohaus  (model Adventurer, ± 0,001g) into a testing 
machine (G.T.Test , model 108, precision = 0,5% of the read 
value for force and displacement). This solution was chosen to 
enable an excellent precision for elongation measurements 
provided by the testing machine, in conjunction with the high 
precision of the balance for very low load. Balance and 
compression plate were covered with oil (Haribo ) to prevent 
adhesion between testing apparatus and samples. A digital 
camera was integrated for evaluation of sample geometry and 
optical control during the experiment.  
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Fig. 3 : Schema of the testing apparatus 

 
D. Compression protocol 

Due to brain delicacy, no preconditioning was used. The 
experiment was performed under optical control of a digital 
camera. Low speed (0,007mm/mn) has been used to approach 
the sample. 

 
Compression protocol : v = 0,5mm/mn, max. elongation = 

1,5mm which corresponded to approximately 35% of the 
initial height of the samples. Load values were read out from 
the balance every 15 s ; one test lasted 3 mn. 

III. RESULTS  

Experimental results are presented in Fig. 4 as load vs.  
elongation curves of the medians of the experimental results. 
The shape of the curves was concave upward, which was 
already obtained by Miller and Chinzei [4].  
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Fig. 4 : Load vs. elongation of medians for brain samples parallel and 
perpendicular to axons fibers 
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For an elongation of 0 to 25%  white matter exhibited 
isotropy. For deformation superior to 25%, the load versus 
elongation curves diverged increasingly, just to a difference of 
37% between the samples of the two perpendicular directions 
for 35% of elongation, respectively. For elevated elongation 
the perpendicular samples showed higher elasticity than the 
parallel ones.  

IV. DISCUSSION 

The samples evaluated under the described ‘physiological’ 
conditions kept due to their fragility unfortunately not their 
cylindrical shape but formed more or less cone like structures 
as shown in Fig. 2. That is the reason why we here have been 
able to investigate relative anisotropy only and could not 
quantify mechanical properties. Anyway since we took great 
care to perform all experiments under exactly the same 
circumstances it is possible to compare the results and 
determine relative values. This is what one needs to detect 
anisotropy. 

 
To explain the initial isotropy of the white matter we may 

apply the following explanation given by Koeneman [1]: 
"When a force is applied the load is carried by the elastic 
forces of the compressed cells and intercellular (viscous) 
forces. As viscous forces are broken, an increasing amount of 
the load is carried by the cells which are further compressed". 
To transpose this hypothesis to our experiments on white 
matter : in the first phase load acts on intercellular medium 
and glial cells, before the axons are affected. 

 
To explain the clear cut anisotropy found in higher 

elongation one has to take the histological structure of the 
tissue into account. Axons can be compared to very long 
tubes. If we hypothesize that at large deformations the 
adhesion qualities of the medium are lower (less adhesion 
forces due to glial cells), then it would be logical that 
compressing a mesh of long tubes perpendicularly to their axis 
requires more load than in parallel to them. Indeed in the 
second case axons would deform more easily. 

 

V. CONCLUSION  

Our results give clear cut evidence for anisotropy of the 
white matter of brain tissue in vitro. Under compression it 
shows an initial isotropic behavior, then becomes anisotropic 
for large deformations. This has to be taken into account in 
biomechanical simulation of brain tissue. 

The method used to cut samples is based on histological 
literature.  

Coupling high precision balance and a testing machine 
seems a good choice in quasistatic experiments : it is easy to 
use and allows very precise results at very low levels of load 
and displacements. 

 
 
 

We are currently establishing new criteria to choose 
samples for analysis, and limit the problem due to a variation  
in the geometry of the samples.  

To determine quantitative material properties also, we aim 
to develop an online evaluation of geometry of the samples 
under stress. 
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